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ABSTRACT 

This paper employed the technique of Multiple Regression (MR) in estimating the 
tree stem volume of Roystonea regia (R. regia) based on two volumetric equations, 
namely, the Huber’s and Newton’s formulae. Variables considered for data 
mensuration were stem height (or bole), tree height, diameter at breast height, 
diameter at middle and diameter at top of the stem before the crown. Correlation 
coefficient and normality tests were done to screen and select possible variables with 
their interactions. Transformations were done for normality and variables with 

Pearson correlation coefficient values greater than 0.95 were eliminated to reduce 
multicollinearity. All selected models were examined using parameters tests: Global 
test, Coefficient test and the Wald test. The Wald test was carried out to justify the 
elimination of the insignificant variables. The eight criteria model selection (8SC) 
process was done to obtain the best regression model without effects of 
multicollinearity and insignificant variables. Major contributors to the best Multiple 
Regression (MR) model were from tree height and diameter at the middle of the 
stem, while significant contributions were from the bole (h) and diameters at breast 

height (Dbh) and the top, Dt.    
 
Keywords: stem volume, correlation coefficient, multicollinearity, 8SC, best 
multiple regression. 

 

 

1. INTRODUCTION TO BIOMASS ESTIMATION 

The global atmospheric CO2 build-up is partially due to 

deforestation. Alternatively, aforestation appears to be one of the feasible 
methods of reducing the concentration of CO2 from the atmosphere. It uses 

solar energy and allows an economic fixation of CO2 from the atmosphere 

which does not depend on concentrated CO2 streams. Control of dispersed 
sources of CO2 is also taken into account by photosynthetic extraction of 

CO2 from the atmosphere. 

 

Trees properly used in a landscape could increase property values 
by as much as 20 percent, besides providing food and shelter for birds and 



Noraini Abdullah, Zainodin H.J. & Amran Ahmed 

 

2 Malaysian Journal of Mathematical Sciences 
 

urban wildlife. Planted strategically, the right shade trees could further 
reduce building cooling costs by as much as 50 percent. Burns (2006) also 

discovered that trees were found to reduce the temperature of streets and 

parking lots by 8 to 10 degrees in the summer, hence making paved 
surfaces last longer without repairs. They would also improve air quality by 

trapping dust, absorbing air pollutants and converting carbon monoxide to 

oxygen which is essential towards mankind environment. 

 
Hoffman and Usoltsev (2002) studied on the tree–crown biomass 

estimation in the forest species of the Ural and Kazakhstan, had stated that 

there were two separate most economical and relatively precise regressions, 
one for broad-leaved while the other for coniferous species, each only use 

stem diameter at the lowest point of the crown, Db. Approximation for 

coniferous foliage was found to have improved considerably by allowing 

parallel regressions, inclusive of mean diameter increment and diameter at 
breast height as predictors; however, tree age being less influential than its 

mean increment. 

 
Wang (2006) also developed an allometric equation relating 

component biomass to independent variables, such as, diameter at breast 

height (Dbh) and tree height (TH) for 10 co-occurring tree species in 
China’s temperate forests, by using simple linear regression, and then 

executed the PROC GLM procedure in SAS for analysis. The foliage 

biomass was found to be more variable than other biomass components, 

both across and within tree species. 
 

Estimation of crown characters and leaf biomass from leaf litter in a 

Malaysian canopy species, Elateriospermum tapos (Euphorbiaceae) was 
also studied by Osada et al. (2003). Estimated values were found to be 

similar to the values estimated from the allometric equation which used 

parameters such as, the diameter at breast height and the overall tree height. 
Forest productivity was evaluated and the characteristics in various forests 

were studied using litter trap method which in turn, estimated by the non-

linear least square regression. 

 
The increasing desire for total tree utilization and the need to 

express yield in terms of weight rather volume had stimulated studies of 

biomass production by Fuwape et al. (2001). Even-aged stands of Gmelina 

arborea and Nauclea diderrichii in Nigeria were studied to obtain the 

biomass equations and estimation of both of the species. Nauclea 

diderrichii, an indigenous species was found to strive well in plantations. 

Onyekwelu (2004) had assessed the above ground biomass production of 
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even-aged stands of Gmelina by non-destructive method and recommended 
that models incorporating Dbh only to be used for estimating the biomass 

production. 

 
 Noraini et al. (2008) had also studied the stem biomass estimation 

of Cinnamomum iners using the multiple regression technique. Stem height 

(bole) and diameters at breast height, middle and the top were found to be 

significant contributing factors and should be incorporated into the 
regression models. 

 

 

2.  SITE DESCRIPTION AND MATERIALS 

The data set were measured from a commonly grown tree, 

Roystonea regia (R. regia), found in Universiti Malaysia Sabah main 
campus in Sabah. Located on a 999-acres piece of land along Sepanggar 

Bay in Kota Kinabalu, at latitude 6º 00’ and longitude 116º 04’. The region 

has a mean annual rainfall around 2000-2499 mm with a relative humidity 
of 81.2+0.3ºC. The mean annual temperature is 27.2+0.1ºC and its seasonal 

rain extends from October to January. Only data from trees, located along 

the steps starting from the Chancellery Hall up towards the Chancellery, 

were measured and collected. Variables were measured using clinometers 
and fibreglass girth tape. The clinometer is used to measure the height of a 

tree while the fibreglass tape measures the diameter indirectly by wrapping 

round the tree to measure the circumference in a perpendicular plane to the 
stem axis, and its value divided by pi (π) to estimate the diameter.  

 

 

3. ROYSTONEA REGIA, PHYSICAL AND FUNCTIONAL 

USES 

The common name for Roystonea regia (R. regia) is the Royal 

Palma or R. regia, in short. Belonging to the palm family of Palmae or 

Arecaceae, it is a native of Cuba, but now have naturalized in Hawaii, 
Florida and most parts of the world with a subtropical moist and subtropical 

wet life zones. Its growth can be rapid to a massive height of 15.0-34.5 

meters with 61 cm in diameter, and symmetrical with a smoothly sculpted 
trunk, lending a distinctive air to parkways and boulevards. Primarily 

valued as an ornamental tree, hence being used in urban landscaping, its 

fruits are also a source of oil. In some parts of the Caribbean, like Cuba, the 



Noraini Abdullah, Zainodin H.J. & Amran Ahmed 

 

4 Malaysian Journal of Mathematical Sciences 
 

leaf-bases are used for roof thatches, and the trees for timber, livestock feed 
and palmito which is the edible terminal bud of the heart-of-palm.  

 

The procedures of measurement done for the R. regia were as 
follows. Firstly, the height of stem (bole) for each palm tree was measured 

from the land at ground level up to where the colours of the tree stem 

started to differ by using clinometers. The diameters of the stem measured 

were at breast height, middle and top of the stem using a diameter girth 
tape. The main variables of the mensuration data would include the 

followings: 

 
h = stem height of tree (bole) 

At  = area at the top of stem  

Am = area at the middle of stem  

Ab = Area at the base of stem with Db as the diameter at the base 
Dbh = diameter at breast height 

Dt = the diameter at the top 

Dm = diameter at the middle or halfway along the log 
Db = the diameter at the base 

 

 

Figure 1: R. regia grown around the main campus (UMS).           Figure 2: Schematic    

diagram of R. regia. 
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4. BIOMASS EQUATIONS 

Two volumetric formulae were used to calculate the stem volume of 

a tree. They were the Huber’s and Newton’s formulae which used different 

measurable variables in their equations. Figure 2 illustrates the schematic 
diagram of R.regia and the variables measured for field data collection. 

a) Newton’s Formula 

The basal area of every mean tree in a tree population could be 

calculated using the formula, 2( ) / 4Ab Dbhπ= , where Ab is the area at 

the base, and Dbh, the diameter at breast height. Stem volumes of the 

mean tree were then estimated using the Newton’s formula (Fuwape et 

al.(2001)), ( 4 ) / 6,VN h Ab Am At= + +  where VN would be the volume 

using Newton’s formula (m
3
), h as the stem height (bole), and Ab, Am 

and At were the areas at the base, middle and top, respectively. 

 

b) Huber’s Formula 

The main stem, up to merchantable height, is theoretically divided into 

a number of (mostly) standard length sections. The standard length is 
normally 3m (~10 feet). The exception to the standard section is the odd 

log - a section less than the standard length that fits between the last 

standard section and the merchantable height. These sections are 

assumed to be second degree paraboloids in shape. The bole from the 
merchantable height to the tip is assumed to be conoid in shape. The 

Huber's formula is based on the assumption that the sections are second 

degree paraboloids. However, this may not be appropriate for the 
bottom or base log-which is often neiloid. Huber's formula will 

underestimate the volume of a neiloid. However, this underestimate 

will be small if the difference in diameter between the bottom and the 

top of the section is small (i.e. small rate of taper or small sectional 
length). Thus, sections measured smaller than 3 meters may be 

necessary to avoid bias. Error in the standard sectional estimate of 

volume may also be introduced where the tip is not like a conoid. 
However, the volume in the tip is relatively small, so this error is likely 

to be unimportant (Brack (2006)). 

  
The Huber's formula was used to calculate the volume of the standard 

sections and the odd log. It was given by: hVH h S= × . Taking the 

cross-sectional area (cm
2
) halfway along the log as Sh, then VH 

2( ) / 40000h Dmπ= × × , where VH was the volume using the Huber’s 
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formula (m
3
), h was the stem height or bole (m), and Dm denoted the 

diameter (cm) halfway along the log (Brack (2006)). 

 

 

5. METHODOLOGY 

Data Transformations of Normality 

The data variables were measured from 72 trees non-destructively. For 
simplicity, the definitions of the variables are given in Table 1. 

 
TABLE 1: Definition of Variables 

 

Variable Name Definition 

VN;VH Volume of stem (m3):N-Newton’s; H-Huber’s 

h Stem height (bole) from the ground to the top before crown (m) 

TH Tree height from ground to the peak of tree (m) 

Dbh Diameter at breast height (m for Newton’s; cm for Huber’s) 

Dm Diameter at middle of trunk (m for Newton’s; cm for Huber’s) 

Dt Diameter at top of trunk (m for Newton’s; cm for Huber’s) 

 
At the preliminary stage as with most environmental data, normalities of 

variables were a problem that had to be addressed. Hence, appropriate 
transformations were necessary. Since the data were not normally 

distributed (Lind et al. 2005), data transformations were done for normality. 

The variables were then tested for their normality distribution based on 
Kolmogorov-Smirnov statistics with Lilliefors significance level of more 

than 0.05, since the sample size was large (n > 50). This test was based on 

the null hypothesis that the data set was normally distributed.  

  
The objective of this paper is to compare models using multiple regressions 

(MR) technique based on the two volumetric biomass equations. The MR 

models were made of a dependent variable, V, the stem volume and five 
independent variables, taken from field data mensuration. The phases in the 

methodology involved in modelling the MR models would be illustrated 

further in the subsequent subsections on the model-building procedures.  
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6. PHASE 1: FORMATION OF ALL POSSIBLE MODELS 

The number of possible models was obtained by using the 

formula
5

1

( )
q

q

j

j

j C
=

=

∑ , where q is the number of single independent variables. 

For five single independent variables and together with its combinations of 

interactions, a total of 80 possible models (as shown in Table 2 and 

Appendix A) could be obtained, before any regression procedures were 
done.  

 
TABLE 2: Number of Possible Models before Regression Procedures. 

 

Number of 

Variables 
Individual 

Interactions 

First 

Order 

Second 

Order 

Third 

Order 

Fourth 

Order 
Total 

1 5C1 = 5 NA NA NA NA 5 

2 5C2 = 10 10 NA NA NA 20 

3 5C3 = 10 10 10 NA NA 30 

4 5C4 = 5 5 5 5 NA 20 

5 5C5 = 1 1 1 1 1 5 

Total 31 26 16 6 1 80 

Models M1-M31 M32-
M57 

M58-M73 M74-
M79 

M80  

 
For example, taking the definitions of variables from Table 1, one of the 
possible models (M36) would be given by: 

 

uXXXXXXXY ++++++++= 1231232323131312332211036
12

ββββββββ       (1) 

 
Each of these possible models could be written in a general form as in 

equation (2). 
 

0 1 1 2 2 ... ,
k k

V W W W u= Ω + Ω + Ω + + Ω +                            (2) 

 
where W is an independent variable which might come from one of these 

types of variables, namely, single independent, interactive, generated, 

transformed or even dummy variables (Peck  et al. (2008)). 
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7. PHASE 2: PROCEDURES IDENTIFYING SELECTED 

MODELS 

a) Multicollinearity Removal 

The field data variables were initially in Microsoft Excel together with 

its all possible interactions. The existence of an exact linear relationship 

between the variables was examined from the Pearson Coefficient 
Correlation matrix in SPSS. The correlation between the variables was 

then investigated based on the Pearson Correlation Coefficient. Any 

absolute values of highly correlated variables (|r| > 0.95 was taken) were 

eliminated or excluded from the model so as to reduce the effects of 
multicollinearity (Ramanathan (2002)). The number of case types due to 

multicollinearity (Noraini et al. (2011)), and the number of variables 

removed due to multicollinearity (Zainodin et al. (2011)), would be 
denoted by the letter ‘b’, which came after the parent model, say Ma. 

The model then would be known as Ma.b. These models without 

multicollinearity were then examined by eliminating the insignificant 

variables. 

 

b) Backward Elimination of Insignificant Variables  

The backward elimination procedures began with the full model of all 

affecting individual variables as well as its possible interactions in 

SPSS, and sequentially eliminated from the model, the least important 

variable. The importance of a variable was judged by the size of the t (or 
equivalent F)-statistic for dropping the variable from the model, i.e., the 

t-statistic was used for testing whether the corresponding regression 

coefficient is 0. Initially, the independent variable with the largest p-
value, as shown in the coefficient table, would be omitted the regression 

analysis was rerun on the remaining variables. The insignificant 

variables were omitted from the model by eliminating any independent 
variables with the largest p-value and greater than 0.05. The backward 

elimination process would then be repeated and the model after 

subsequent iteration would be denoted by Ma.b.c where ‘c’ is the 

respective number of insignificant variables eliminated. The number of 
runs or iterations would end when all the significant variables had p-

values less than 0.05 (Noraini et al. (2008); Zainodin et al. (2011)).   
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c) Coefficient Tests 

Considering a general model of equation (2), all possible models would 

undergo the Global and Coefficient tests. The opposing hypotheses of 

the Global test were: 
 

0 1 2: ... 0
k

H Ω = Ω = = Ω = , and 1 :H at least one of the Ω’s is non-zero. 
 

From the ANOVA table of the selected model, missing independent 

variables could be known from the degree of freedom and the number 

of excluded variables due to multicollinearity. Null hypothesis, 0H  

would be rejected if ( , 1, )*
cal k n k

F F α− −> and vice versa. Alternatively, if 

the p-value in the ANOVA table was less than α, null hypothesis would 

also be rejected, implying that at least an independent variable would 

have an effect on the dependent variable.  
 

The Coefficient test would determine the significance of the 
corresponding independent variables on the model. The opposing 

hypotheses of the j-th coefficient test were:  
 

0 : 0,
j

H Ω =  and 1 : 0
j

H Ω ≠   
 

where Ωj is the coefficient of Wj  for j =1, 2, 3, …, k. 
 

The Wald test was then carried out to ensure that the removed or 

eliminated variables were positively identified, besides testing the joint 

significance of several regression coefficients of the independent 
variables. By assuming, model before omission of independent variable 

as Unrestricted model (U), and model after one or more independent 

variable(s) being eliminated as Restricted model (R), opposing 

hypotheses were used to test the overall significance for both the 
restricted and the unrestricted models.  

 

(U) 0 1 1 2 2 1 1... ...
m m m m k k

V X X X X X u+ += Ω + Ω + Ω + + Ω + Ω + + Ω +  
 

(R) 0 1 1 2 2 ...
m m

V W W X v= Ω + Ω + Ω + + Ω +  
 

The opposing hypotheses of the Wald test were:  
 

0 1 2: .... 0,
m m k

H + +Ω = Ω = = Ω =  

and   

1 :H  at least one of
j

Ω ’s is not zero.  
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The critical value was denoted by ( ), 1,
,

k m n k
F

α− − −
found in the F-

distribution table at α percent level of significance. Using the F-

statistics (Christensen (1996)), when ( ), 1,
,cal k m n k

F F
α− − −

< the null 

hypothesis was not rejected, hence accepting the removal of the omitted 
variables. Thus, there would be no significant contribution on the 

dependent variable at α percent level of significance.  
 

 

8. EIGHT CRITERIA MODEL SELECTION 

In recent years, several criteria for choosing among models have 

been proposed. These entire selection criteria take the form of the residual 
sum of squares (SSE) multiplied by a penalty factor that depends on the 

complexity of the model. A more complex model will reduce SSE but raise 

the penalty. The criteria thus provide other types of trade-offs between 
goodness of fit and model complexity. A model with a lower value of a 

criterion statistics is judged to be preferable (Christensen (1996)).  

 

Ramanathan (2002) had also shown the statistical procedures of 
getting the best model based on these eight selection criteria, namely, 

SGMASQ, AIC, FPE, GCV, HQ, RICE, SCHWARZ and SHIBATA as shown 

by the Table 3 below. The best model which could give the volume would 
then be chosen based on these eight selection criteria. The eight selection 

criteria (8SC) for the general model is based on ( )1K k= +  estimated 

parameters, n is the number of observations and SSE is the sum square error. 
 

TABLE 3: Eight Selection Criteria on General Model  
 

AIC 

(Akaike (1970)) 
2 )SSE ( K / n

e
n

 
 
 

 
RICE 

(Rice (1984)) 
1

2
1

SSE K

n n

−
    

−    
    

 

FPE 

(Akaike (1974))  
SSE n K

n Kn

+ 
  − 

 
SCHWARZ 

(Schwarz 
(1978)) 

/SSE K n
n

n

 
 
 

 

GCV 

(Golub et al. 

(1979)) 

2

1
SSE K

n n

−
    

−    
    

 

SGMASQ 

(Ramanathan 

(2002)) 

1

1
SSE K

n n

−
    

−    
    

 

HQ 

(Hannan and Quinn 
(1979)) 

( )
2

ln
SSE K / n

n
n

 
 
 

 
SHIBATA 

(Shibata (1981)) 
2SSE n K

nn

+ 
 
 
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9. RESIDUAL ANALYSES ON BEST MODEL 

Best model was identified based on the eight selection criteria 

(8SC), and carried out after the regression analyses and hypotheses testing 

mentioned above. The goodness-of-fit, being one of the attributes of the 
best model, would demonstrate the variations of the dependent variable and 

the distribution of the error terms. Randomness test and normality test were 

conducted to examine these attributes (Gujarati (2006); Ismail et al. 

(2007)). Using the best model to obtain the estimated values, the residual or 

error term, u  which was the difference between the actual and the 

estimated values of the best model could thus be calculated. Since there 

would be a pattern between the error terms and the nth observations, the 

error terms implied homoscedasticity (Gujarati (2006)). 

 
The randomness test of the residuals was carried out to test the 

accuracy of the best model. The opposing hypotheses 

were 0)()(:0 == uEumeanH i  and 0)()(:1 ≠= uEumeanH i . The t-

statistics ( )cal
T was calculated using the formula 

2

1

1
cal

n k
T R

R

− −
=

−
 

where
1

1

1

SS

Kuiu
n

R
u

n

i

i∑
=

−

= , ∑
=

=
n

i

iu
n

u
1

1
, 

2

1

2
)(

1
uu

n
S

n

i

iu −= ∑
=

, 
2

1

1

12

n
S

−
=  

and 
1

.
2

n
K

+
=  With n observations and k estimated parameters, using the 

normal distribution table, accept null hypothesis if 
*

/2cal
T zα<  at five 

percent level of significance. 
cal

T was to be calculated, while *

0.025z  at five 

percent level of significance was 1.96. Acceptance of the null hypothesis 

implies that the mean error would be zero and the error terms are randomly 

distributed and independent of one another. 
 

 

10. ANALYSES OF MULTIPLE REGRESSION (MR) MODELS 

Descriptive Statistics, Correlation Matrix and Multicollinearity 

The data sets were tested for normality. Since they were not normally 

distributed, transformations of the variables were then carried out using 

Kolmogorov-Smirnov statistics at Lilliefors significance level of more than 
0.05. Before transformation, only two variables, namely TH and Dt, were 

normal, having their significant p-values of more than 0.05. Appropriate 
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ladder-power transformations were then used for normality. Table 4 
indicates the newly assigned variables for the transformed variables. 

 
TABLE 4: Definition of New Variables 

 

Transformed New Variable Definition 

VH
0.835 V1  Volume of stem (m3): Huber’s 

VN
0.9 V2 Volume of stem (m3): Newton’s 

h
3 X1 Stem height, h (m) 

TH X2 Tree height from ground to the peak (m) 

Dbh
2.7 X3 Diameter at breast height 

Dm
2 X4 Diameter at middle of stem 

Dt X5 Diameter at top of stem 

 

All the new variables, except for (V1=VH
0.835

), had turned to normal, as 
shown in Table 5 with their p-values greater than 0.05 (in bold). The best 

power of ladder transformation for VH was 0.835. Based on the p-value of 

the Kolmogorov-Smirnov (K-S) statistics, normality was not assumed, as 

shown in Table 5.   
 

 

TABLE 5: Descriptive Statistics of Normality Tests of Variables after Transformation 
 

Definition of 

New Variables 

After Transformation 

V1 V2 X1 X2 X3 X4 X5 

Mean 0.3726 0.978 25.53 7.63 22104 1381 23.15 

Standard Error 0.0198 0.386 1.81 0.24 1233.4 66.920 0.499 

Std. Deviation 0.1683 0.327 15.36 2.036 10466 567.8 4.237 

Minimum 0.11 0.38 1.48 3.39 4476.0 412.9 12.0 

Maximum 0.63 1.46 61.63 11.01 41213 2500 33.0 

Skewness -0.020 -0.23 0.182 -0.36 0.007 0.037 -0.14 

Kurtosis -1.494 -1.31 -0.72 -0.86 -1.27 -1.26 0.13 

K-S Statistics 0.134 0.104 0.099 0.103 0.104 0.104 0.055 

K-S (p-value) 0.003 0.050 0.077 0.055 0.052 0.051 0.200 

 

Graphically, the assumptions of normality were supported by the normality 

histogram plots of the new variables as depicted in Table 6 below. The Q-Q 

plot of V1 had further supported the acceptance of the relatively normal 

histogram plot for V1, since all the points were along the straight line 
without deviation and no presence of outliers. 
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TABLE 6: Normality Plots of the New Variables. 
 

Normality Histogram of V2 Normality Histogram of X3 

 
Normality Histogram of X1 

 
Normality Histogram of X2 

 
Normality Histogram of X4 

 
Normality Histogram of X5 

 

Normality Histogram of V1  

 

Normality Q-Q Plot of V1 

 

The data sets were initially tested for bivariate relationships between the 

main variables using the Pearson Correlation Coefficient test. From the 

Correlation Coefficient matrix, there existed positive relationships from 

weak (a value of |r| = 0.226) to strong (a value of |r| = 0.952) between the 
variables, significant at the 0.01 level (2-tailed). Table 7 shows the 

correlation coefficients with multicollinearity using the Huber’s formula for 

R. regia.  
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TABLE 7:  Correlation Coefficient Matrix with Multicollinearity using Huber’s 
Formula. 

 

Transformed 

Variables 
V1 X1 X2 X3 X4 X5 

V1 1      

X1 0.646 1     

X2 0.706 0.842 1    

X3 0.906 0.380 0.468 1   

X4 0.922 0.324 0.463 0.952 1  

X5 0.722 0.226 0.373 0.809 0.788 1 

 

There was a strong linear relationship between X3 and X4 of the main 

variables giving a value of |r| = 0.952. This was expected in the data sets 
since the diameter at breast height was technically measured 1.3 meters 

from the base of tree trunk. From observations of the trees, the middle of 

tree stem occasionally fell within the range of the diameter at breast height, 

Dbh. However, the existence of multicollinearity (|r|> 0.95 (in bold)) 
between the variables had to be remedied first so as to overcome the 

presence of any excluded variables when undergoing the elimination 

processes. 
 

The multicollinearity effect was thus eliminated by first investigating the 

effect of variables X3 and X4 on the volume, say for model M31 using the 

variable V1 (volume using the Huber’s formula) with five single 
independent variables without interactions. As shown in Table 7, this was a 

multicollinearity of Case C type which had a single tie of a high correlation 

coefficient value amongst these variables (|r| = 0.952 > 0.95).  More details 
on the types of multicollinearity cases and the remedial techniques in 

removing multicollinearity can be found in Zainodin et al. (2011).  

 
Variable X3

 
having the lower absolute correlation coefficient on the volume 

(|r| = 0.906), compared to X4 (|r| = 0.922), was thus eliminated. Model 

M31H  had then reduced to M31.1H. The value 1 denoted the letter ‘b’, the 

first eliminated source variable of multicollinearity. Rerunning the model 
after elimination, the coefficient matrix would thus show the nonexistence of 

multicollinearity, as shown by Table 8 below. The equation of the model  

would thus have variables without high multicollinearity. The model could 
then undergo the next process of Phase 2, that is, the backward elimination 

of insignificant variables. 
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TABLE 8: Correlation Coefficient Matrix without Multicollinearity using Huber’s Formula. 
 

Transformed 

Variables 

V1 X1 X2 X4 X5 

V1 1     

X1 0.646 1    

X2 0.706 0.842 1   

X4 0.922 0.324 0.463 1  

X5 0.722 0.226 0.373 0.788 1 

 

Similar procedures using the Zainodin-Noraini Multicollinearity Remedial 

Techniques (Zainodin et al. (2011)) were carried out on all the regression 

models using the Newton’s formula. It could also be seen from Table 9 that 
there was a strong correlation between X3 and X4.  
 

TABLE 9: Correlation Coefficient Matrix with Multicollinearity using Newton’s Formula. 
 

Transfomed 

Variables 
V2 X1 X2 X3 X4 X5 

V2 1      

X1 0.811 1     

X2 0.814 0.842 1    

X3 0.806 0.380 0.468 1   

X4 0.797 0.324 0.463 0.952 1  

X5 0.634 0.226 0.373 0.809 0.788 1 

 
Similarly as before, the existence of multicollinearity (|r| > 0.95 (in bold)) 

between the variables had to be remedied first by eliminating the source 

variable of multicollinearity. Variable X4 having the lower absolute 
correlation coefficient on the volume (|r| = 0.797) compared to X3 (|r| = 

0.806), was thus eliminated. Model M31N  had then reduced to M31.1N 

with the value 1, denoting the first eliminated source variable of 

multicollinearity. The correlation matrix was thus without multicollinearity, 
and is shown in Table 10. 
 

TABLE 10: Correlation Coefficient Matrix without Multicollinearity using Newton’s 
Formula 

 

Transformed 

Variables 
V2 X1 X2 X3 X5 

V2 1     

X1 0.811 1    

X2 0.814 0.842 1   

X3 0.806 0.380 0.468 1  

X5 0.634 0.226 0.373 0.809 1 
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Multicollinearity also occurred in models where there existed a high 
frequency of a common variable of a high correlation with the other 

independent variables, as shown by model M39.0.0 in Table 11. Variable X3 

with the highest frequency of 2 and a lower absolute correlation value with 
the dependent variable, would have to be eliminated first.  

 

In addition, for models with variables having the highest correlation with 

other independent variables, would also be eliminated due to 
multicollinearity, such as, variables X13 and X14 which had a high 

correlation coefficient of 0.986. Interaction variable X13 would therefore be 

removed since it had a lower correlation value with the volume. The model 
was then rerun. 

 
TABLE 11: Model with High Frequency Multicollinearity.  

 

M39.0.0  V1 X1 X3 X4 X13 X14 X34 

V1 1       

X1 0.646 1      

X3 0.906 0.380 1     

X4 0.922 0.324 0.952 1    

X13 0.903 0.826 0.781 0.708 1   

X14 0.925 0.857 0.765 0.728 0.986 1  

X34 0.913 0.347 0.970 0.971 0.744 0.744 1 

 

A single tie of a high correlation value of 0.971 indicated that the 

interaction variable X34 had to be removed due to its lower impact on the 

volume. Rerunning the correlation again would result in Table 12 where 
model M39.3.0 had gone through three multicollinearity source removals of 

the Zainodin-Noraini multicollinearity remedial techniques (Zainodin et al. 

(2011)).  
 

TABLE 12: Final Correlation Matrix without High Multicollinearity 
 

M39.3.0  V1 X1 X4 X14 

V1 1    

X1 0.646 1   

X4 0.922 0.324 1  

X14 0.925 0.857 0.728 1 
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Parameter Tests of Model Functions 

All possible models would undergo the procedures of multicollinearity 

reduction, as mentioned in the earlier section. Parameter tests corresponding 

to the independent variables are therefore carried out to verify the 
insignificance of the excluded variables. The parameter tests (excluding 

constant of the model) would include the Global test, Coefficient test and the 

Wald test.  The rejection of the Global test null hypothesis would imply that 

at least one variable would have an effect on the relative dependent variable 
as implicated by model M71.6 which had undergone six removals of 

multicollinearity source variables. From the ANOVA table in Table 13, 

since Fcal =4615.36 > F
*
(7, 64, 0.05)

 
= 2.164, the null hypothesis would be 

rejected implying that at least one of the parameters was not zero. The p-

value in the ANOVA table also showed that it was less than 0.05, at five 

percent level of significance, thus rejecting the null hypothesis. 

 
TABLE 13: ANOVA Table for Model M71.6.0H 

 

Model 
M71.6.0H 
- Huber’s 

Source Sum of Squares df 
Mean 
Square 

F 
Sig. 

(p-value) 

Regression 2.0114 7 0.2873 4615.36 5.9x10-84 

Residual 0.0039 64 6.2x10-5   

Total 2.0154 71    

 
The models for each volumetric formula of R.regia were then selected by 

applying the backward elimination method of the Coefficient test (Peck et 

al. (2008)). This Coefficient test was done to determine the significance of 

the related independent variable. An illustration of the elimination procedure 
is shown in the following table using Huber’s formula.  

 
TABLE 14: Coefficient Table of Model M71.6.0H 

 

Model 
M71.6.0H – 

Huber’s 

Unstandardized 
Coefficients t Sig. p-value 

B Std.Error 

(Constant) -8.772x10-2 1.777x10-2 -4.936 5.993x10-6 

X1 4.123x10-4 2.7x10-4 1.504 0.1376 

X5 1.117x10-2 1.611x10-3 6.934 2.431x10-9 

X13 1.164x10-3 2.193x10-4 5.307 1.488x10-3 

X15 -1.899x10-3 5.766x10-4 -3.299 1.585x10-3 

X34 2.044x10-4 1.408x10-5 14.518 6.361x10-22 

X35 -4.186x10-4 2.837x10-5 -14.758 2.826x10-22 

X145 1.098x10-4 8.878x10-6 12.369 1.261x10-18 
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From Table 14, based on the parameter regression coefficient of variable X1 
with p-value=0.1376, above the value of 0.05, and smallest absolute t-

statistics or the highest p-value, as compared to the rest of the models, 

therefore, variable X1 was removed and the model was then refitted. The 
remaining variables were then rerun and any variable which had the new 

highest p-value (>5%) was subsequently removed. The elimination 

procedures had been described in detail by Noraini et al. (2008). Table 15 

below shows the final coefficients of the variables of the possible best 
model (M71.6.1H) after the first regression procedure. There were no p-

values more than 0.05 (>5%), hence, the selected model M71H had reached 

to its final stage of the selected best model.  
 

TABLE 15: Coefficient Table of Model M71.6.1H after 1st Iteration. 
 

Model 
M71.6.1H 
– Huber’s 

Unstandardized Coefficients 
t Sig. p-value 

B Std.Error 

(Constant) -8.853x10-2 1.793x10-2 -4.936 5.847x10-6 

X5 1.077x10-2 1.604x10-3 11.292 5.521x10-9 

X13 1.313x10-3 1.972x10-4 24.892 6.886x10-9 

X15 -1.656x10-3 5.578x10-4 -9.934 4.177x10-3 

X34 2.010x10-4 1.403x10-5 9.658 8.729x10-22 

X35 4.182x10-4 2.863x10-5 9.250 3.369x10-22 

X145 -1.067x10-4 8.729x10-6 -7.984 1.615x10-18 
 

The Wald test was then carried out to justify the elimination of the 

insignificant independent variables from the selected best models. Using the 

Huber’s formula, the unrestricted model was given as (UH) while the 
restricted model was (RH).  
 

0 1 1 5 5 13 13 15 15

( 71.6.0) :

1

H
U M

V X X X Xβ β β β β= + + + +
 

34 34 35 35 145 145X X X uβ β β+ + + +                                 (4) 

 

0 5 5 13 13 15 15

( 71.6.1) :

1

H
R M

V X X Xβ β β β= + + +
 

34 34 35 35 145 145X X X vβ β β+ + + +                   (5) 
 

where u and v are error terms. Using the opposing hypotheses and ANOVA 
table for both the unrestricted and restricted models, the null hypothesis 

would be accepted when ( ), 1,
,cal k m n k

F F
α− − −

< implying that the eliminated 

independent variable would have insignificant effect or contribution on the 
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relative dependent variable. The Wald test for model M71 was shown by the 
ANOVA Table in Table 16 below.  
 

 

Since ( )3.2165 1,64,0.05 3.9983,
cal

F F= < = the null hypothesis is accepted 

at five percent level of significance. The removal of the insignificant 

variables is acceptable since they have no contribution to the dependent 
variable, i.e. on the volume. 
 

TABLE 16: ANOVA Table for Wald Test of Model M71.6.0H 
 

Model 

M71.6.0 H-

Huber’s 

Source Sum of Squares df 
Mean 

Square 
F 

Difference (R-U) 2.0x10-4 1 2.0x10-4 3.2165 

Unrestricted (U) 3.98x10-3 64 6.218x10-5  

Restricted (R) 4.13x10-3 65   
 

 

These modelling procedures were sequentially repeated for the other 
possible models using the Newton’s formula. Starting with the removal of 

multicollinearity source variables, validation of the excluded variables using 

the Global test, elimination of the insignificant variables using the 

Coefficient test (determining that there would be no more variable with a p-
value of more than 0.05), and finally, the Wald test to positively justified the 

elimination of the insignificant variables from the model. Similarly, the 

Wald test using the Newton’s formula, the unrestricted model was given by 
(UN) while the restricted model was (RN).  
 

0 2 2 3 3 4 4 5 52

( 77.7.0) :
N

V X X X X

U M

β β β β β= + + + +
 

12 12 15 15 23 23 25 25X X X X uβ β β β+ + + + + +              (6) 
 

0 2 2 4 4 5 5 12 122

( 77.7.1) :
N

V X X X X

R M

β β β β β= + + + +
 

15 15 23 23 25 25X X X vβ β β+ + + +                        (7) 
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TABLE 17: Coefficient Table of Model M77.7.1N after 1st Iteration. 
 

Model 
M77.7.1N 

- Newton’s 

Unstandardized Coefficients 
t Sig. p-value 

B Std.Error 

(Constant) -0.1813 0.0801  2.7x10-2 

X2 0.1190 0.0135 0.7396 1.1689x10-12 

X4 2.5239 0.2159 0.4378 1.5862x10-17 

X5 1.0206 0.3655 0.1321 6.88x10-3 

X12 -1.2x10-3 1.4709x10-4 -0.5691 5.1063x10-11 

X15 9.3x10-4 5.5361x10-5 1.0909 3.7873x10-25 

X23 3.6154x10-7 1.4634x10-7 0.1199 3.14x10-2 

X25 -3.9173x10-3 5.8254x10-4 -0.7762 5.6511x10-9 
 

11. NEWTON’S-HUBER’S MULTIPLE REGRESSION (MR) 

MODELS 

 After undergoing the procedures in Phase 1 and Phase 2, the 

number of possible models had reduced to 34 selected models using the 

Huber’s formula and 42 selected models using the Newton’s formula. 

Based on the regression models, without multicollinearity and insignificant 
variables, the final selected regression model functions for R.regia, using 

the Huber’s formula, were then tabulated based on the eight selection 

criteria, as mentioned earlier. The best model was chosen when it had 
majority of the least value of the eight criteria, as indicated by M79.21.0H 

in Table 18 below. The model equation is: 
 

3 2 3 3

1 5 12 141 0.110 1.16 10 1.01 10 2.16 10 3.49 10

79.21.0 :

V x X x X x X x X

M H

− − − −= − − + + −
 

3 4 4

15 24 342.11 10 1.74 10 1.0 10x X x X x X− − −− − +  
4 6

35 13452.3 10 1.1 10 vx X x X− −− + +                 (8) 
 

TABLE 18: Selected Best Models on 8SC Using Huber’s Formula. 
 

Selected 

model 
k+1 SSE AIC FPE GCV HQ RICE SCHWARZ SGMASQ SHIBATA 

M1.0.0 2 1.17328 0.01723 0.01723 0.02856 0.01506 0.01725 0.01835 0.01833 0.01718 

M2.0.0 2 1.01297 0.01487 0.01487 0.02856 0.01506 0.01489 0.01584 0.01447 0.01720 

M3.0.0 2 0.36213 0.00531 0.00532 0.02856 0.01506 0.00533 0.00566 0.00517 0.00531 

M4.0.0 2 0.30496 0.00448 0.00448 0.02856 0.01506 0.00448 0.00448 0.00436 0.00447 

: : : : : : : : : : : 

M11.0.0 3 0.10618 0.00160 0.00160 0.04408 0.03135 0.00161 0.00176 0.00154 0.00160 

M12.0.0 3 0.51816 0.00528 0.00528 0.04408 0.03135 0.00529 0.00580 0.00507 0.00526 

: : : : : : : : : : : 

M33 3 0.08211 0.00124 0.00124 0.04408 0.03135 0.00124 0.00136 0.00119 0.00124 

M34 3 0.00598 0.00009 0.00009 0.06049 0.04897 0.00009 0.00001 0.00008 0.00009 

M39 2 0.28864 0.00424 0.00424 0.02856 0.01505 0.00424 0.00451 0.00412 0.00423 

: : : : : : : : : : : 
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TABLE 18 (continued): Selected Best Models on 8SC Using Huber’s Formula. 
 

Selected 

model 
k+1 SSE AIC FPE GCV HQ RICE SCHWARZ SGMASQ SHIBATA 

M58.2.1 5 0.07296 0.00116 0.00116 0.07785 0.06797 0.00118 0.00136 0.00109 0.00115 

: : : : : : : : : : : 

M63.2.1 5 0.01208 0.00019 0.00019 0.07785 0.06795 0.00019 0.00023 0.00018 0.00019 

M64.4.1 3 0.10073 0.00152 0.00152 0.04408 0.03135 0.00153 0.00167 0.00146 0.00151 

M65.3.1 4 0.16401 0.00255 0.00255 0.06049 0.04897 0.00256 0.00289 0.00241 0.00253 

M68.8.2 4 0.01828 0.00028 0.00028 0.06049 0.04897 0.00029 0.00032 0.00269 0.00028 

M70.6.0 8 0.01022 0.00018 0.00018 0.13631 0.13427 0.00018 0.00023 0.00016 0.00017 

M71.6.1 7 0.00413 0.00006 0.00006 0.11570 0.11054 0.00007 0.00008 0.00006 0.00007 

M72.8.2 5 0.09161 0.00146 0.00146 0.07785 0.06797 0.00148 0.00136 0.00171 0.00145 

M79.21.0 10 0.00183 0.00003 0.00003 0.18140 0.18716 0.00003 0.00004 0.00003 0.00003 

Min  0.00183 0.00003 0.00003 0.02856 0.01505 0.00003 0.00004 0.00003 0.00003 

 

Similarly, the best MR model using the Newton’s formula is given 

by M80.22.0N as in Table 19 below: 

 

2 4 5
2 0.184 0.125 1.734 1.270

80.22.0 :

V X X X

M N

= − + + +
 

3 3

12 152.308 10 1.419 10x X x X
− −− +  

6 3

23 251.084 10 4.637 10x X x X
− −+ −    

7 8

124 1355.564 10 1.402 10x X x X v
− −+ − +                         (9) 

 
TABLE 19: Selection of Best Models on 8SC using Newton’s Formula. 

 
Selected 

model 
k+1 SSE AIC FPE GCV HQ RICE SCHWARZ SGMASQ SHIBATA 

M1 : 2.6039 0.03720 0.03823 0.03823 0.03826 0.03921 0.03829 0.04073 0.03817 

: : : : : : : : : : : 

M56.1.0 4 0.3440 0.00506 0.00534 0.00534 0.00535 0.00561 0.00538 0.00606 0.00530 

: : : : : : : : : : : 

M60.1.1 3 0.8087 0.01171 0.01219 0.01219 0.01221 0.01266 0.01224 0.01341 0.01215 

: : : : : : : : : : : 

M76.1.2 3 0.0311 0.00499 0.00520 0.00519 0.00520 0.00539 0.00521 0.00571 0.00518 

M77.7.1 7 0.0653 0.00103 0.00113 0.00113 0.00115 0.00125 0.00117 0.00146 0.00111 

M78.18.1 7 0.0114 0.00282 0.00313 0.00314 0.00318 0.00346 0.00323 0.00403 0.00307 

M79.21.1 8 0.1932 0.00301 0.00334 0.00334 0.00338 0.00369 0.00343 0.00430 0.00327 

M80.22.0 9 0.0333 0.00053 0.00059 0.00060 0.00060 0.00067 0.00062 0.00079 0.00058 

Min  0.0333 0.00053 0.00059 0.00060 0.00060 0.00067 0.00062 0.00079 0.00058 

 

However, comparing the minimum values of the eight selection 

criteria (8SC) of the best models from Table 18 and Table 19 respectively, 
the regression model (M79.21.0H) using the Huber’s formula is better with 

the least SSE (1.83x10
-3
). By transforming the defined variables back into 

the model equation, the best MR model using the Huber’s formula is 
therefore 
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M79.21.0 H : 

3 3 2 3 3

3 3 2 3 3 4 2

4 2.7 2 4
. 2.7

6 3 2.7 2
.

0.835
0.110 1.16 10 1.01 10 2.16 10 .

3.49 10 . 2.11 10 . 1.74 10 .

1.0 10 2.3 10
.

1.1 10 .

VH x x x

x x x

x

v

h Dt h TH

h Dm h Dt TH Dm

Dbh Dm x
Dbh Dt

x h Dbh Dm Dt

− − −

− − −

− −

−

= − − + + −

− − +

− +

+

                (10) 

 

 

12. RESIDUAL ANALYSES 

Using the best model to obtain the estimated values, the residual or 

error term, ε, which is the difference between the actual and the estimated 

values of the best model was then calculated. Since there was no obvious 
pattern between the error terms and the n observations, hence, the error 

terms implied homoscedasticity (Ismail et al. (2007)). 

 

The randomness test of the residuals was also carried out to test the 
accuracy of the best model (M79.21.0H). The opposing hypotheses were: 

0)()(:0 == uEumeanH i  and 0)()(:1 ≠= uEumeanH i . Since the data set 

contained 72 observations, using the normal distribution table, accept null 

hypothesis if 
*

/2cal
T zα<  at five percent level of significance. The t-statistics 

( )cal
T was calculated at 0.15433 while *

0.025z  at five percent level of 

significance was 1.96. Hence, the null hypothesis is accepted, implying that 
the mean error is zero and the terms are randomly distributed and 

independent of one another as shown by the residual plots in Figure 3. 

   

   
 

Figure 3: Scatter Plot and Histogram of the Standardized Residuals. 
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Normality test of the residuals was then conducted to examine whether the 
error terms are normally distributed using Kolmogorov-Smirnov statistics 

(for n>50).  

 
TABLE 20: Residuals Normality Test for Model M79.21.0H 

 

Residuals of 
M79.21.0H 

Kolmogorov-Smirnov 

Statistic d.f. Sig. 

0.117 71 0.052 

 

The distribution is considered normal if the significant p-value was 

greater than 0.05 at five percent level of significance as shown in Table 20 
above. Thus, this implies that the error terms were normally distributed and 

all other data diagnostics were also satisfactory.  From the plots of the 

randomness and normality tests of the residuals, it can be concluded that 
assumptions of homoscedasticity, randomness and normality of the best 

model have been satisfied. 

 

 

13. DISCUSSIONS 

Stem volume is a good estimation in determining the biomass of a 
certain tree species where various estimation techniques can be employed. In 

this paper, models were developed using multiple regression techniques 

based on the Newton’s and Huber’s formulae. At the preliminary stage, 

multicollinearity remedial methods were employed to reduce biased 
estimators. Comparisons were then made based on the eight selection 

criteria for the best model. 

 
 From the results obtained, it is clear that both volumetric equations 

using Huber’s and Newton’s formulae for R. regia can be estimated using 

multiple regression models. Using Huber’s volumetric formula for R. regia, 
the best model is found to be as in equation (8), with two main and seven 

interaction variables. Meanwhile, under Newton’s volumetric formula the 

best model is found to be as in equation (9) with three main and six 

interaction variables. Based on the 8SC, the Huber MR model is the best 
regression model since it gives the least SSE value, and satisfies majority of 

the requirements of the criteria. 

  
 Under these equations, it is also obvious that stem height or bole (h) 

and diameter at the top (Dt) for R .regia are major contributors towards the 

stem volume and significant contributions are also from the tree height (TH) 
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and mensuration diameters at breast height (Dbh) and the middle, Dm. It 
should be noted that there is a common directly positive linear relationship 

from the diameter at the top (Dt) in both models. The difference existed in 

the Huber’s and Newton’s models are due to the volumetric formulae 
themselves. Newton’s formula takes into account the areas at the base 

(Dbh), middle, and the top while the Huber’s formula accounted just a single 

diameter halfway along the stem. This had also been concluded by Noraini 

et al. (2008) on a tropical tree species, C.iners where the Newton’s 
regression model gave a better estimation with respect to the mensuration 

data obtained. Onyekwelu (2004) had also concluded that most of the 

biomass accumulation was stored in the stem. This indicated that a very high 
percentage of tree wood could be merchantable either for timber or other 

uses. Fuwape et al. (2001) also showed that more than 75% of total biomass 

yield were from the stem too, for both species of Gmelina arborea and 

Nauclea diderrichii stands in the Akure forest reserve where the research 
was done. 

 

 

14. CONCLUSIONS 

 Removal of multicollinearity and elimination of insignificant 

variables have primarily reduced the backward elimination procedures and 
the number of selected models. Consequently, the iteration time and 

selection of best models are also reduced. The process of eight selection 

criteria (8SC) is a convenient way to determine or select the best model for 
stem volume estimation. The volumetric stem biomass of the R.regia trees 

of the paraboloid shape is best modeled by adopting the Huber’s volumetric 

formula. Contrary to the C.iners of Noraini et al. (2008) which is the 
trapezoidal shape, the Huber’s volumetric equation is significantly 

preferable due to its simplicity in estimating the stem biomass of the 

paraboloid shaped trees of R. regia. 

 
 The best models using both the Huber’s and Newton’s formulae can 

also be used to estimate missing data values for tree volume prediction.  In 

forecasting, such as time series data where discrete variables involving time 
and space are measurable items, any missing values will be a deterrent to 

model formulation.  Models developed for forecasting with a mean average 

prediction error (MAPE) of less than 10% would give very good estimates, 
and hence, lower inventory costs in tree-planting and forest management 

practices as well as felling or logging costs in timber production.  
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 Both the two best models can be used for estimation, however, the 
Huber’s best model will be able to give good estimates with two single 

variables (stem height and diameter at the top) and variables up to the first 

order interactions can be represented in the model. The third order 
interaction is of minimal effect towards the volume. Meanwhile, the 

Newton’s best model has many single independent variables (tree height, 

diameter at the middle, and diameter at the top) and interaction variables up 

to the second order to affect the volume estimation. 
 

 Further research can be done towards the numerical analysis of stem 

biomass by looking into other volumetric equations. Since maximum 
volumetric biomass can also be related to the circumferential area of tree 

trunk, optimization of merchantable tree log and its economic values 

(Lemmens et al. (1995)) can also be explored further with forecasting into 

the potentials and commercialization of tree species. It is suggested that 
stem biomass estimation with respect to shape, the techniques involved and 

the numerical problems being addressed, will certainly give a new outlook 

in estimating and modeling of the volumetric stem biomass.   
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Appendix A: All Possible Regression Models 

 

Models with Five Single Independent Variables  

M1 Y1 = β0 + β1X1 + u 

M2 Y2 = β0 + β2X2 + u 

M3 Y3 = β0 + β3X3 + u 

M4 Y4 = β0 + β4X4 + u 

M5 Y5 = β0 + β5X5  + u 

M6 Y6 = β0 + β1X1 + β2X2 +u 

M7 Y7 = β0 + β1X1 + β3X3 +u 

M8 Y8 = β0 + β1X1 + β4X4 +u 

M9 Y9 = β0 + β1X1 + β5X5 +u 

M10 Y10 = β0 + β2X2 + β3X3 +u 

M11 Y11 = β0 + β2X2 + β4X4 +u 

M12 Y12 = β0 + β2X2 + β5X5 +u 

M13 Y13 = β0 +β3X3 + β4X4 +u 

M14 Y14 = β0 +β3X3 + β5X5 +u 

M15 Y15 = β0 +β4X4 + β5X5 +u 
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M16 Y16 = β0 + β1X1 + β2X2 + β3X3 +u 

M17 Y17 = β0 + β1X1 + β2X2 + β4X4 +u 

M18 Y18 = β0 + β1X1 + β2X2 + β5X5 +u 

M19 Y19 = β0 + β1X1 + β3X3 + β4X4 +u 

M20 Y20 = β0 + β1X1 + β3X3 + β5X5 +u 

M21 Y21 = β0 + β1X1 + β4X4 + β5X5 +u 

M22 Y22 = β0 + β2X2 + β3X3 + β4X4 +u 

M23 Y23 = β0 + β2X2 + β3X3 + β5X5 +u 

M24 Y24 = β0 + β2X2 + β4X4 + β5X5 +u 

M25 Y25 = β0 + β3X3 + β4X4 + β5X5 +u 

M26 Y26 = β0 + β1X1 + β2X2+β3X3 + β4X4 +u 

M27 Y27 = β0 + β1X1 + β2X2+β3X3 + β5X5 +u 

M28 Y28 = β0 + β1X1 + β2X2+β4X4  + β5X5 +u 

M29 Y29 = β0 + β1X1 + β3X3 + β4X4 + β5X5 +u 

M30 Y30 = β0 + β2X2 + β3X3 + β4X4 + β5X5 +u 

M31 Y31 = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5+u 

Models With First Order Interactions 

M32 Y32 = β0 + β1X1 + β2X2 + β12X12 +u 

M33 Y33 = β0 + β1X1 + β3X3 + β13X13 +u 

M34 Y34 = β0 + β1X1 + β4X4 + β14X14 +u 

M35 Y35 = β0 + β1X1 + β5X5 + β15X15 +u 

M36 Y36 = β0 + β2X2 + β3X3 + β23X23 +u 

M37 Y37 = β0 + β2X2 + β4X4 + β24X24 +u 

M38 Y38 = β0 + β2X2 + β5X5 + β25X25 +u 

M39 Y39 = β0 + β3X3 + β4X4 + β34X34 +u 

M40 Y40 = β0 + β3X3 + β5X5 + β35X35 +u 

M41 Y41 = β0 + β4X4 + β5X5 + β45X45 +u 

M42 Y42=β0+β1X1+β2X2+β3X3+β12X12+β13X13 +β23X23+ u 

: :            :           :             :            

M57 Y57=β0+β1X1+β2X2+β3X+β4X4+β5X5+β12X12+β13X13+β14X14+β15X15+β23X23+β24X24 + 

β25X25 +β34X34+ β35X35 +β45X45+u 

Models With Second Order Interactions 

M58 Y58 = β0 + β1X1 + β2X2 + β3X3 +β12X12 + β13X13+ β23X23+ β123X123+u 

M59 Y59 = β0 + β1X1 + β2X2 + β4X4 +β12X12 + β14X14+ β24X24+ β124X124+u 

M60 Y60 = β0 + β1X1 + β2X2 + β5X5 +β12X12 + β15X15+ β25X25+ β125X125+u 

: :            :           :             :              :              :              :            : 

M73 Y73 = β0+β1X1+β2X2+β3X3+β4X4+β5X5+β12X12+β13X13+β14X14+β15X15+β23X23+β24X24+ 

β25X25+β34X34+β35X35+β45X45+β123X123+β124X124+β125X125 +β134X134 +β135X135+β234X234  

+ β235X235 + β345X345  +u 

Models With Third Order Interactions 

M74 Y74 = β0 +β1X1+ β2X2+β3X3+β4X4+β12X12+β13X13+β14X14+β23X23+β24X24+β34X34+β123X123+ β124X124+ β134X134+ 

β234X243+β1234X1234+u 

: :            :           :             :              :              :              :            : 

M79 Y79 = β0+β1X1+β2X2+β3X3+β4X4+β5X5+β12X12+β13X13+β14X14+β15X15+β23X23+β24X24+ 

β25X25+β34X34+β35X35+β45X45+β123X123+β124X124+β125X125+β134X134+β135X135+β145X145+β234X234 

+β235X235+β245X245+β345X345+β1234X1234+β1235X1235+β1245X1245 +β1345X1345 +β2345X2345+u 

Models With Fourth Order Interactions 

M80 Y80 = β0+β1X1+β2X2+β3X3+β4X4+β5X5+β12X12+β13X13+β14X14+β15X15+β23X23+β24X24+β25X25+ 

β34X34+β35X35+β45X45+β123X123+β124X124+β125X125+β134X134+β135X135+β145X145+β234X234+β235X235 

+β245X245+β345X345+β1234X1234+β1235X1235+β1245X1245+β1345X1345 +β2345X2345+ β12345X12345 +u 

 


